ABACUS 3.9 Released | Significantly Improved Efficiency in Plane Wave Basis Set Calculations and New Constant Potential Simulation Function
Atomic Abacus (ABACUS) is an open-source first-principles calculation software. It supports electronic structure calculations and molecular dynamics simulations based on density functional theory. ABACUS allows users to choose plane wave basis sets or numerical atomic orbital basis sets for functions such as electronic self-consistent iterations, band structure, density of states calculations, and structural optimizations. In addition, it supports multiple DFT theoretical methods including Kohn-Sham DFT, Real-time TDDFT, Stochastic DFT, Orbital-Free DFT. ABACUS supports various exchange-correlation functionals such as local density approximation (LDA), generalized gradient approximation (GGA), metaGGA, and hybrid functionals. ABACUS also provides good support for multiple AI-assisted algorithms such as DeePKS, DeePMD, DeePTB, and DeepH. The ABACUS development team aims to support high-precision, high-stability, multi-platform, and large-scale calculations. It conducts online collaborative development in an open-source mode and ensures the rapid iteration of ABACUS in terms of functionality, performance, and reliability by constructing a high-throughput and cross-platform automated test workflow.